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ABSTRACT 
 
It is now evident from anecdotal evidence and preliminary research that distractions 
can hinder the task of operating a vehicle, and consequently reduce driver safety. 
However with increasing wireless connectivity and the mobility of office devices, the 
vehicle of the future is visualized as an extension of the static work place - i.e. an 
office-on-the-move, with a phone, a fax machine and a computer all within the reach 
of the driver. For this research a Head mounted Eye-tracking Device (HED), is used 
for tracking the eye movements of a driver navigating a test route while completing 
various driving tasks. Issues arising from data collection of eye movements during the 
completion of various driving tasks as well as the analysis of this data are discussed. 
Methods for collecting video and scan-path data, as well as difficulties and limitations 
are also presented. 
The first section of this report compiles a literature review of eye movement based 
studies of driver performance evaluation.  The second section reports the details of an 
on-road study conducted at the University of Rhode Island, and provides a 
commentary on the process of data collection along with a preliminary analyses of the 
data. 
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SECTION 1:  DRIVING WITH DISTRACTIONS – A 
LITERATURE REVIEW 

1.1 INTRODUCTION 

Because of the increasing presence of In-Vehicle Information Systems (IVIS) in 
modern vehicles, questions are now being raised about the impact of these systems 
upon vehicle safety. Manual, visual, and auditory methods are being used to contact 
and interact with various in-vehicle devices such as radios, compact disk players, cell 
phones, laptop, palmtop computers, collision avoidance, global positioning navigation 
systems, speech based e-mail and other modern information equipment. These devices 
provide obvious benefits to the driver; however costs of their inclusion are not so 
clear. Visual, auditory, biomechanical, and cognitive distractions are certainly 
associated with these devices. Clearly, these distractions should not overwhelm the 
driver at any time while driving. To improve vehicular safety some assessment, and 
consequent reduction of these distractions is required ([22] and [37]). However, the 
exact parameters with which a minimum threshold can be defined are not yet fully 
understood ([14] and [7]). Weirwille and Tijerina [42], in their work on developing 
formal definitions of the level of attention required in operating in-vehicle devices, 
found that “the amount and frequency of visual attention to in-vehicle devices is 
directly safety relevant". Vollrath and Totzke [40] conclude form their study on 
communication methods that differences exist in how various methods of 
communication with in-vehicle devices interfere with driving. Car radios have been 
largely accepted as a legitimate driving distraction while other in-vehicle information 
systems have not been accepted with such ease ([17] and [3]). Fundamentally, a 
distraction is anything that takes attention away from the primary task. Which in the 
case of a driver is anything that takes the drivers attention away from the driving task. 
A driver, without information knowledge about the levels of distraction that will 
occur from a secondary task, has no method of distinguishing how much attention 
they will divert from their primary task. While most drivers are risk adverse, they are 
not fully aware of the involved risks when making decisions to use an in-vehicle 
device. Many researchers have addressed problems relating to driver distractions, a 
comprehensive review of the literature and studies on various in-vehicle devices is 
completed in [27].  

1.2 EXISTING RESEARCH INTO THE DISTRACTION PROBLEM 

It has long been recognized that an overload of information processing capacity 
causes problems with driving performance [16]. Existing research provides a number 
of examples of overload. In [2] it is demonstrated that concurrent performance of an 
auditory task impairs judgments of whether the car can be driven through a narrow 
gap. In [8] mental arithmetic performance is shown to be sensitive to the demands of 
the driving task. In recent years, there has been an increase in the range of in-vehicle 
equipment available to drivers. Cassette players and radios are standard in most cars. 
Mobile telephones are now widespread, and lately, pager systems, navigational and 
route guidance equipment have all been introduced into the “driver space". A number 
of investigations have been directed at evaluating the effects that such equipment has 
on driving performance. Cognitive load problems have been related to phone 
conversations, holding the phone, and dialing while driving([17] and [3]). In [17] an 
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intense business conversation is shown to differ from a social conversation in the 
cognitive load placed on the driver while operating a vehicle. It appears that hands 
free conversations do result in reduced cognitive loads, however there is an increase 
in the load compared with normal driving ([20] and [3]). The relative risk of driving 
with a cell phone has also been compared with the hazard associated with driving 
while intoxicated. Redelmeier and Tibshirani [26] state “the relative risk is similar to 
the hazard associated with driving with a blood alcohol level at the legal limit". It has 
also been shown that the risk associated with a phone conversation while driving does 
not end with the call, in [26] it is postulated that the reason for the sustained risk is 
that the driver is still mentally occupied with the past conversation after it is actually 
over. This paper focuses on the use of eye tracking methods to monitor how various 
distracters affect a driver, assuring a relationship between eye movements and 
attention.  

Eye Movements and Attention 

The human oculomotor system is controlled directly from a section of the brain stem 
through the three pairs of extraocular muscles, each responsible for one of the three 
directions of eye movement; horizontal, vertical, and torsional. The most basic 
movement, for which no selective function exists, is called physiological nystagmus 
which is caused involuntarily by tremors in the extraocular muscles, resulting in slight 
shifts of the ocular image in relation to the retina. All the remaining eye movements 
have one thing in common - they have some function in controlling where the eyes 
fixate. A Saccadic eye movement is the fundamental search movement for the eye. It 
can be best described as a ballistic motion to propel the eye to a new object of interest. 
Saccades are further described as pre programmed movements, and once initiated, 
their path or destination cannot be voluntarily altered. A certain amount of time, 
between 150 and 200 ms can be attributed to planning and executing a saccade, while 
the actual movement only takes a maximum of 30 ms while reaching a maximum 
speed of up to 900 deg per sec. The time between saccades is when the eye processes 
visual information by fixating on a target.  
When the object of interest is in motion, a third type of eye movement known as a 
smooth pursuit movement is used as opposed to a sequence of saccades and fixations. 
The purpose of a smooth pursuit movement is to track a moving object and keep it in 
foveal view once a saccade place the object in focus. This movement allows for visual 
information to be extracted from a moving target. It functions using a feedback 
process that constantly uses information related to the speed of the moving object to 
predict where to move the eyes. In order to keep an object centered in the fovea of 
both eyes a fourth type of movement known as vergence movements are used in 
conjunction with smooth movements. Vergence movements are slow, 10 deg per sec, 
disconjugate movements used to select the distance of the target by aligning the object 
in the center of both fovea. A disconjugate movement is described as a situation 
where each eye is looking in different directions. Two final involuntary eye 
movements are vestibular and optokinetic movements, which work in conjunction to 
keep an object in view when the head moves. Vestibular movements are triggered by 
signals from the inner ear to oppose rotational movement, while optokinetic 
movements are triggered by optical translations opposing uniform movements in the 
visual field.  
Eye movements in many cases are assumed to be predictors of attention. An eye-
tracking systems can therefore be used to collect information about how a driver 
responds to different situations on or off the road [25]. Two different models foreye 
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movements and attention are described in [9]. In the first a sequential attention model 
describes attention as being “directed to the specific location toward which the eyes 
will move prior to a saccadic eye movement". In the second model, attention is 
described as being “allocated to all locations in the general direction of the impending 
saccade rather then to the specific target location". Similar findings relating eye 
movements directly to attentional shifts for “ordinary activities" have been found by 
[25]. Saarinen [30] found that “observers could not shift attention away from fixation 
to an extra foveal position as efficiently as they could maintain attention at fixation". 
However there is one difficulty that needs to be remembered. Until some period 
before the saccadic movement starts, models of eye movement and attention presume 
that the movement can be canceled [32]. It is therefore easy to conceive that situations 
exist where attention is directed on objects but no eye movement is ever executed to 
bring it into view. In order to simplify the problem of understanding where attention 
is focused these situations are assumed to be unimportant. While eye movements are 
not a perfect indication of cognitive process, they are a “good index of the moment to 
moment on-line processing activities that accompany visual cognitive tasks" [24]. In 
the past, researchers have used eye movements as an insight to person’s thoughts and 
intended actions [17]. More recently, the focus has shifted into modeling behavior 
patterns based upon eye movements [33]. In either case information about where a 
subject is looking must be collected at high frequency, to capture any sudden changes 
in a persons actions.  
Eye movements recorded at high frequencies can give important clues to human 
behavior. A greater understanding of what information people use in problem solving 
can be determined by how long it takes to process information. Basic work in the field 
was completed in [10] where the relationship between the locus, duration, and 
sequence of eye fixations and the activity of the central processor was investigated. 
Eye movement data looks at where an individual is collecting visual information over 
a very small scale currently in the range of 50  to 400  HZ. Higher collection rates are 
only available in systems where the subjects head is fixed. Commercial head mounted 
eye trackers can currently collect eye movements in the range of 50  to 240  HZ while 
a video recording of the forward scene can be made at 30  HZ. Traditional methods of 
analyzing eye movements have focused largely on separating fixations from saccades 
based upon velocities, aggregation of consecutive points with duration minimums, 
and digital filtering [31]. Manual methods can then be used to identify what a driver is 
fixating on. A recent technique to automate this process involves tracing fixations. 
Fixation tracing is “the process of mapping observed action protocols to the sequential 
predictions of a cognitive process model" [31]. Salvucci ([33], [31]) presents an 
extensive review of current methods of tracing eye movements, and develops three 
new techniques based upon Markov models. The models however are limited their 
application for studying in-vehicle devices because of their assumption that “the task 
environment in which eye-movement data are collected is (at least for the most part) 
static". In the context of the automobile the scenery outside the vehicle is constantly 
moving. The driver is tracking other vehicle, signs, and objects outside the vehicle 
with smooth movements. To detect patterns in driver’s eye movements new methods 
of analysis need to be developed.  
To develop a new method of analyzing dynamic scenes an understanding of visual 
search in a dynamic setting is needed. With the addition of smooth eye movements, 
the analysis of scan paths for dynamic scenes is more difficult than the associated 
problem in a static scene, since conclusions about eye movements and their relation to 
the actual scene can only be made at discrete intervals relating to the recording of the 
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scene camera [38]. The low recording rates of scene cameras make it necessary to rely 
on eye movements recorded at higher frequencies to understand where the subject is 
looking. Driving is one of many tasks that occurs in a dynamic setting and therefore 
exhibits this problem. Drivers, limited by their visual resources, can only focus on a 
single stimulus and search up to three targets a second effectively [19]. Frequently the 
need arises to concurrently monitor many different visual stimuli such as the 
speedometer, rear view mirror, a car in front, to the side, or other aspects of the visual 
scene not related to driving. When visual resources are allocated to secondary tasks a 
decrease in the amount of visual resources allocated to the driving task has to occur 
[29]. Time-sharing is used as a method of partially overcoming this limitation. With 
time-sharing individual visual tasks are completed by sequences of saccadic 
movements and fixations. After enough information has been acquired from one 
stimulus, a saccadic movement is executed, aligning another stimuli with the central 
region of the fovea. The sequence is repeated over again until one of the tasks is 
complete [41]. The primary stimulus in many instances is the forward view of the 
automobile with a range of secondary stimuli competing for the spare visual capacity 
[28]. A problem can occur when a driver chooses to monitor too many secondary 
stimuli instead of the primary task, resulting in a lack of attention to the primary task. 
The driver therefore cannot interpret enough information from the road.  
Drivers naturally develop a safety mechanism to counteract this problem, by limiting 
the amount of time focus is directed off the road for comfort, to a maximum of 
approximately 1.6 seconds [41]. Due to this limitation a difficulty exists when 
information needs to be extracted from highly complex, or unknown secondary tasks, 
such as the cluttered dashboard of a new car or dialing a cell phone. In this situation 
the time to search and complete a task may have to be longer than the comfort limit. 
When information is extracted from complex scene experienced drivers exhibit a 
larger number of eye movements with decreased fixation length [4].  
Other problems can be identified in a drivers visual field. The visual field is a region 
of flexible size and shape that includes both areas of direct focus and indirect focus. 
The useful area of the visual field or functional field of view has been described as 
“the area around the fixation point from which information is being briefly stored and 
read out during a visual task" [43]. A relationship between the size of the visual field 
and workload also exists, when too much information is being processed the useful 
field of view contracts to prevent overloading of the visual system ([23], and [18]). In 
addition, a reduction in the mean gaze duration can be found [18]. The reduction in 
visual field size can be related to two separated phenomena. Tunnel vision, 
represented by a clear reduction in aperture angle of the visual cone, and a general 
decrease in peripheral visual performance independent of the visual cone angle [23]. 
Drivers affected by these changes rely on a greater number of shorter fixations to 
detect and acquire information from targets ([18] and [6]). Crundall et al. [5] 
concludes that slower reaction times result. An on the road driving study, using a 
commercial eye tracker as a method of determining where a subjects attention is 
focused, was completed to further understand the effects that distractions have on 
drivers as well as verifying the results of some previous experiments.  
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SECTION 21:  EYE MOVEMENT DATA COLLECTION FROM 
ON-ROAD DRIVING STUDIES 

2.1 TRACKING DRIVERS EYE MOVEMENTS IN AN ON-ROAD SETTING 

The purpose of this investigation was to analyze the gaze pattern of drivers when they 
are being distracted. In the experiment 24 people, who are all in possession of a valid 
driver’s license, were asked to drive a route of about 20 miles with the Head mounted 
Eye-tracking Device HED on. It was recommended that subjects use the vehicle that 
they most often drive, so that they would already be familiar with the controls. During 
the ride the subjects were confronted with several distractions, which were presented 
by one of the investigators. When driving past a pre-determined position on the route 
for each distraction, the researcher played back a pre-recorded CD track initiating the 
specific distraction. The distractions which the subjects were confronted with were:  

1. Turning on the radio and changing the station to 1610 AM.  
2. Note the prices of gasoline from approaching gas stations.  
3. Answering a phone call without a hands free device and completing a 

computational task.  
4. Looking in the rearview mirror and describe the vehicle that is following.  
5. Answering a hands free phone call and completing a memory task.  
6. Reading the odometer.  
7. Startle sound of a cellular phone (3 rings).  

2.1.1 System Setup  

To operate the system in a car the following items were required:  
1. IView operator PC.  
2. Computer monitor for eye level tracking.  
3. HED.  
4. CD player and speakers.  
5. UPS power pack.  

The iView operator records and stores all the incoming data from the HED. The 
monitor is necessary to make real time adjustments to the pupil and corneal reflection 
threshold. When driving in natural light conditions, the light intensity changes with 
cloud cover, time of day, tree / bridge cover etc. This affects the contrast of the pupil 
and corneal reflection. This effect is most pronounced when it is sunny. Therefore, 
cloudy days will give better eye data. Two researchers travel with the subject, inside 
the car. One researcher operates the iView PC and the other researcher controls the 
distraction presentation. During an experimental run, the distracting researcher is 
assigned the following tasks:  

1. Activating the distractions.  
2. Note the traffic circumstances.  
3. Asking particular questions.  
4. Noting the answers.  

                                                 
1 This report is extracted from a paper presented at the second Association of Computing Machinery’s 
Eye Tracking Research Conference, New Orleans, 2002. 
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2.1.2 System Calibration 

In order to capture the gaze position correctly, the system has to be calibrated for each 
driver. This is done by defining a number of points where the subject must focus on. 
The number of points and their positions can be defined with the iView software. The 
calibration procedure gives the option of being able to define a 2-points, 5-points, 9-
points and a 13-points calibration. The more points used, the more accurate is the 
calibration and thus the gaze position. When encountering difficulties during 
calibration, a couple of things were tried to facilitate calibration. First, the number of 
points used for calibration can be decreased. Another option is to decrease the 
calibration accept level. The higher the acceptation level, the harder it is to accept a 
gaze position. As a result the gaze position is more accurate. Correspondingly, the 
lower the acceptation level, the faster the system will accept a gaze position, but the 
calibration is less accurate. The points are displayed on the computer screen. 
Dragging and dropping the points manually can change the placement of the 
calibration points. This is very convenient when a point is placed on a location where 
the subject can hardly see it or has to turn their eyes in an unnatural position. With 
this option the point can be shifted to a better location. To solve the problem of 
calibrating the system with the driver seated in the car, the car was driven in front of a 
flat surface such as a garage door. This provides a flat uniform wall where the 
calibration points could be easily located with a laser pointer or stick.  

2.1.3 Data Recording 

As mentioned earlier, the HED uses three different cameras: the scene camera, the eye 
camera and the IR camera. The data coming from the scene camera and the IR camera 
are stored digitally, as an MPEG file and ASCII file respectively in the PC, while the 
eye camera data can be stored via a video recorder. The digital data is used for the 
analysis and the eye camera data is used for adjusting the contrast of the pupil and 
corneal reflection during the calibration and the drive. For this reason, only the scene 
camera and IR camera data was recorded for this research.  
When the eyes are closed the IR camera is unable to detect the pupil and the corneal 
reflection. As a result, a number of zeros corresponding to the eye position jumping 
from the current position to the upper left corner of the scene video will be recorded 
in the ASCII file. The upper left corner is considered the origin of the coordinate 
space, with right movements resulting in higher horizontal values and upwards 
movements resulting in greater vertical values.  
When the calibration procedure is successfully completed the subject is ready to 
drive, the scene camera and IR camera data begin recording. The subject is now asked 
to look straight forward and close his/her eyes for three seconds. This is done to 
synchronize the two camera systems. The synchronization can later be used when 
trying to identify the scene that relates to measurements recorded in the ASCII file. 
This procedure proved to be critical in understanding how the recorded scene relates 
to the recorded ASCII file.  

2.2 RESULTS 

To evaluate the effect of in-vehicle tasks on the driver, focus has been placed on 
analyzing eye movements as recorded in the ASCII file using the recorded scene as a 
method of determining the physical location of a movement. Since the average length 
of the drive was 39 minutes, an average of 39 60 50 117 000∗ ∗ = ,  eye positions 
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measurements were made for each subject. Before a detailed analysis could begin, 
problems associated with environmental conditions that limit the effectiveness of the 
eye tracker while recording data needed to be addressed. Two limitations of eye 
tracking were observed when a comparison of the collected data and recorded video 
was made. First the eye tracking equipment cannot obtain a position measurement 
when the eye is closed, say when blinking. In this situation the eye tracker assumes 
the eye’s position is at the origin the upper left hand corner. Second, sunlight 
interferes with the IR recording device, resulting in collected positions outside of the 
feasible region of measurement. Before any in depth analysis can be completed both 
types of false data need to be removed from the data stream. The data was filtered to 
remove both positions recorded at the origin and points outside the feasible region. 
When the horizontal and vertical eye positions are plotted against time, the filtered 
sections are missing as illustrated in (Figure 2.1). A detailed investigation into eye 
movement patterns could then be completed.  
Basic plots of recorded data positions for a particular subject are shown against time 
for four of the tasks presented to the driver in this study: changing the radio 
(Figure 2.1), checking the rear view mirror (Figure 2.2), reading the odometer 
(Figure 2.3), and a hand held cell phone conversation (Figure 2.4). The figures show 
the pattern of eye movements before, during, and after a task is given to the driver. 
Since the subject had no indication when the instructions for a task were to begin, eye 
movements patterns before the start of instructions in any figure can be considered 
controls. However it is difficult to classify any movements recorded as being 
representative of “normal driving", as will be discussed later. Two basic patterns can 
be identified from the results, one in which glances are made between the roadway 
and the device (radio, rear view mirror, and odometer) (Figures 2.1, 2.2, and 2.3) and 
another where the driver is in a state of static fixation on the center of the road 
(Figure 2.4). Each of these situations needs to be analyzed in a different manner, with 
relation to the effects on driving performance.  
In the radio task it is easy to see how the drivers eye movements follow the task 
sharing model. The instruction period, the period where the task is completed, and an 
individual eye movement off the road are illustrated in (Figure 2.1). When the driver’s 
eyes move to the radio, which is located down and to the right of the forward view, 
the horizontal position and vertical positions increase, with a delay occurring at the 
position of the radio where some action is completed until a movement back to the 
forward view is completed, up and to the left i.e. the horizontal and vertical positions 
decrease. The process is repeated until the task is completed. The rear view mirror 
task, (Figure 2.2), is very similar to the radio task, except instead of a downward 
movement to the radio, an upward movement to the mirror is combined with a 
movement to the right. The odometer reading, (Figure 2.3), shows more of just a one 
dimensional movement to the dashboard. When the driver’s eyes are not focused on 
the roadway, unexpected stimuli will not be focused close to the fovea, requiring 
another eye movement and fixation before an understanding of the situation can be 
made. The driver, when engaged in the cycle of glances between the device and the 
roadway, also loses the ability to monitor situations that could be occurring around the 
vehicle peripheral but not directly in front. These types of movements are responsible 
for many of the spikes found in the control space around the illustrated tasks.  
A lack of eye movements to surrounding locations is even more pronounced during 
the cognitive phone task where the drivers eye “wander" around the center of the 
forward view. The lack of movement possibly corresponds to visual tunneling a 
reduction in the useful field of view observed during periods of increased information 
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processing. In this situation it is again unlikely that the driver would notice situations 
occurring around the vehicle. It was also observed that the reduction in eye 
movements did not end with the phone call i.e. end of the instruction period. Relating 
to the situation described in [26], where a sustained risk after the end of a cell phone 
conversation is related to after thoughts. Even with the ability to identify distractions 
that cause a reduction in eye movements, risk matrices to categorize their safety 
effects are difficult to compute. The ability to develop these matrixes requires an 
understanding of a “normal" driver’s eye movement pattern. Methods of comparing 
hypothesized “normal" driver’s eye movements are needed to fully understand the 
when a driver is under the effects of a cognitive task.  

 

Figure 2.1 Horizontal (top line) Vertical (bottom line) eye movements plotted against time during 
the radio task 

 

Figure 2.2 Horizontal (top line) Vertical (bottom line) eye movements plotted against time during 
the rear view mirror task 
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Figure 2.3 Horizontal (top line) Vertical (bottom line) eye movements plotted against time during 
the odometer task 

 

Figure 2.4 Horizontal (top line) Vertical (bottom line) eye movements plotted against time during 
the cognitive hand held phone conversation 

Glance Measurements 

A detailed analysis of glances has been completed for the radio, rear view mirror, and 
odometer task. If a glance is defined as the static time when a driver is likely to be 
interpreting information from either the roadway or some in-car device, some 
hypothesis can be formulated on how long a driver’s eyes are off the road to complete 
a particular task. To simplify the analysis it is assumed that the driver is either 
interpreting information from the roadway or IVIS device. Movement times and the 
influence of peripheral vision are currently omitted from this preliminary analysis for 
simplicity. The elimination of movement times could have some effect on glance 
times, since a slow movement would be better classified as part of the transition as 
opposed to a glance. For the radio task illustrated in (Figure 2.1), it is possible to 
construct a table, identifying where the eyes are directed during the task. Glances can 
be characterized as either on road or off road glances. The data corresponding to the 
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radio change task is illustrated in Table 2.1. Glances can then be used as an indication 
of how often a driver’s eyes are not on the road. Table 2.2 summarizes the glances for 
the radio, rear view mirror, and odometer tasks. The data seems to verify the, 1.6 
second rule discussed in [41], since all but four glances for all three tasks were under 
the limitation, and only one glance for 2.32 seconds exceeded 1.6 seconds for more 
than 0.08 seconds. Without safety matrixes it is difficult to discuss how the driver is 
affected by different patterns of glances. However at 25 MPH the 2.32 second glance 
would represent no direct fixation or smooth movement to the roadway for a distance 
of 85 feet, raising some basic questions of safety that cannot be answered. Glance 
measurements cannot be completed for the cognitive task since it would represent one 
long glance to the roadway. Similarly cognitive effects of the radio, rear view mirror, 
and odometer tasks cannot be included in the analysis. As in the case of the cognitive 
phone conversation, a calculated “normal" eye movement pattern could allow for a 
further understanding of the cognitive effects of these tasks.  
 

Road Location Road Location   
Glance  On  Off  Glance  On  Off   

1   1.64  16  0.34   
2  1.40   17   1.26   
3   1.44  18  0.32   
4  0.84   19   1.00   
5   1.38  20  0.46   
6  0.36   21   1.06   
7   1.44  22  0.36   
8  0.30   23   2.32   
9   1.16  24  0.54   
10  0.28   25   0.44   
11   1.10  26  0.44   
12  0.32   27   0.92   
13   1.18  28  1.40   
14  0.36   29   0.82   
15   1.22     

 
Table 2.1 Glances for the radio task 

 
Measure  Radio  Mirror  Odometer   

Task 
completion  

26.12  26.56  9.24   

Off the road  18.38  18.72  5.9   
Max off the 

road  
2.32  1.68  1.16   

Average off 
the road 
glance  

1.23  1.17  0.84   

Average 
glance  

0.90  0.86  0.71   

Glances to 
complete task  

15  16  7   

 
Table 2.2 Summary of glances for the radio, rear view mirror, and odometer task 
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2.3 ASSUMPTIONS, APPROXIMATIONS AND ANALYSES 
 
Traditional methods of analyzing eye movements have focused largely on separating 
fixations from saccades based upon velocities, aggregation of consecutive points with 
duration minimums, and digital filtering [31]. In a driving situation, smooth 
movements are also present and these methods would need to be modified to be useful 
in the general case. Methods of separating fixations, smooth movements, and 
saccades, probably can be completed with a velocity threshold. The velocity of 
saccadic movement is always significantly larger than that of a smooth movement. A 
method based upon this type of separation is discussed in [34].  
Once a separation of smooth and saccadic movement is made another problem arises. 
If a tracing program is to map these movements to a cognitive process model, an 
understanding of the environment the subject is immersed in is required. In the case of 
a car driver, the environment is continuously changing, making it difficult to identify 
what is actually occurring, even if it is possible to identify where the subject’s visual 
attention is focused in a coordinate space automatically. Manual mapping is one 
technique commonly used to identify the scene. In manual mapping a human operator 
determines, from a video recorded during the test, what is actually occurring. In 
addition to the dynamic scene, head movements further complicate the analysis of eye 
movement data recorded using a head mounted eye tracker.  
If a head mounted eye tracker is used, recorded data only represents the eye 
movements in relation to the subject’s head. In many situations a reference to the 
vehicle or outside space is desired so some calculation of the gaze path needs to be 
made. To calculate the gaze path some combination of head and eye position is 
required. Some eye tracker models are available with an optional head tracker to 
eliminate the head movement problem. However, these systems can be problematic in 
vehicles because of their use of magnets.  
Difficulties with head movements when using a HED are one reason for their limited 
use. In situations where a head tracker can not be used, characteristics between head 
and eye movements maybe useful in separating out the head movement component of 
the gaze path. In [39] head movement is shown to be dependent on eye movement. 
Land [11], discusses the semi-predictable relationship between fast moving saccadic 
movements and slower head movements. When both the eyes and head receive 
commands to turn, an eye movement occurs quickly with the head following slowly, 
if free to do so. In situations where the head is not free to move, additional movement 
is added to the eyes, resulting in the same line of gaze [12]. Stern and Ranney [39] 
describe two types of head movements, predictive head movement, where the head 
movements usually precedes the eye movement, and reactive head movements where 
the eye movement “lags behind the head movement". Predictive head movements 
usually occur in situations where we anticipate looking at something in our peripheral, 
while reactive head movements occur when we do not anticipate looking. Other 
methods have been developed for identifying head movement, including video 
analysis techniques using face tracking ([15] and [21]) and a more complex light 
projection system [36]. Future work on separating head movements could include 
action recognition algorithms similar to those proposed in ([1] and [13]). The work in 
[13] aims to develop an image processing solution to the head movement problem. 
Schill et al. [35] look at methods for automatically detecting regions of interest in 
images using a complex learning based system based upon eye movements, while 
disregarding the actual head position.  
In order to further understand what effects distracting tasks have on the driver, some 
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understanding of what is considered “normal" driving is needed. Such a measure is 
inherently difficult to calculate in a real road setting since the environment is 
constantly changing. The problem is akin to the steady state problem in random 
process. However, in the case of drivers, it may be possible to estimate “normal" eye 
movements in an artificial environment where the road is straight, with oncoming 
cars. However here too it is easy to imagine the number of possible derivations that 
could be discussed to describe what a driver would be expected to look at. In a 
situation with a oncoming cars approaching at 25 MPH, the driver needs to give the 
less attention to the approaching car than at 40 MPH since unconsciously the driver 
knows things are happening slower. While signs on the side of the road require quick 
glances that may happen with some probability etc.  

2.4 CONCLUSIONS 

This paper demonstrates how various eye movements can be collected and analyzed 
to compare a driver’s performance with a variety of in-vehicle tasks. Conclusions 
verify some basic measures that have already been published in the literature. Eye 
movements for the radio, rear view mirror, and odometer tasks all show patterns of 
time multiplexing by drivers. Attention is divided between the tasks of driving and the 
secondary task, switching back and forth between them. The basic method of analysis 
demonstrated here shows only how a driver divides attention - cognitive effects of the 
task cannot be analyzed using this method. Results also concur with the apparent 
maximum glance time of approximately 1.6 seconds off the road as discussed in [41]. 
In the three test cases shown only four violations of this rule occurred for the 38 
glances off the road and only one of these violations exceeded the rule by more than 
0.08 seconds. The small variation may relate to how movement times were assumed 
to be negligible. The one glance for 2.32 seconds during the radio task is however 
well above the tolerance limit. If the driver was observing the posted speed limit of 25 
MPH, such a glance off the road represents traveling a distance of about 85 feet. 
Although it is tempting to conclude that traveling 85 feet without looking directly at 
the road is a dangerous driving practice, additional work is needed to support this 
hypothesis, and to develop a similar matrix for the effects of cognitive distractions. 
The decrease in eye movements shown with the cognitive task concurs with what has 
been published, and supports the notion of visual tunneling that occurs under 
cognitive load. The dangers involved with the cognitive task are shown to continue 
past the end of the phone conversation, agreeing with the situation described by [26], 
that the risk of a cognitive conversation is still higher than “normal" after 
conversation ends. Since the cognitive task is represented as a single glance at the 
roadway, it may also be interpreted as an unsafe driving practice. It is however a more 
difficult problem to identify a level of risk from the data collected in this study 
without further methods of comparing some measure of “normal" driving.  

2.5 THE FUTURE 

For further development of driver prediction models real-time warning systems and 
advanced modeling systems, fast methods of analyzing human eye movements are 
needed. The next logical step is to develop matrix for interpreting and evaluating eye-
movements as a method of predicting a driver’s intent. Since eye movements are 
assumed to follow a shift in attention, this method shows the most promise for 
predicting driver actions. Future vehicles could easily be fitted with eye tracking 
equipment, monitoring a drivers fixation patterns, thus preventing unsafe distractions.  
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